Femtosecond laser written embedded diffractive optical elements and their applications
نویسندگان
چکیده
Femtosecond laser direct writing (FLDW) has been widely employed to create volumetric structures in transparent materials that are applicable as various photonic devices such as active and passive waveguides, couplers, gratings, and diffractive optical elements (DOEs). The advantages of fabrication of volumetric DOEs using FLDW include not only the ability to produce embedded 3D structures but also a simple fabrication scheme, ease of customization, and a clean process. DOE fabrication techniques using FLDW are presented as well as the characterization of laserwritten DOEs by various methods such as diffraction efficiency measurement. Fresnel zone plates were fabricated in oxide glasses using various femtosecond laser systems in high and low repetition rate regimes. The diffraction efficiency as functions of fabrication parameters was measured to investigate the dependence on the different fabrication parameters such as repetition rate and laser dose. Furthermore, several integration schemes of DOE with other photonic structures are demonstrated for compact photonic device fabrication.
منابع مشابه
The study of propagation of a femtosecond laser pulse in the breast tissue
In this paper, the evaluation of time profile of a femtosecond pulse laser propagated through biological tissues is studied. The majority of the biological tissues with a high scattering anisotropy must be considered as turbid media, that their optical responses are complicated. To study the propagation of ultra-short pulse in turbid media, the diffuse equation is used. In this study, the analy...
متن کاملContribution to Nano or Micro Crystallization induction in Silica-based Glass by Femtosecond laser Irradiation
Femtosecond laser processing in transparent materials is promising owing to the accessible control of energy deposition in time and in space. In this regime, it opens fantastic opportunities to manufacture novel multifunctional composite materials by manipulating the size, shape and orientation of nonlinear crystals with intrinsic symmetry embedded in glasses. This dissertation mainly contribut...
متن کاملEfficient beam shaping of linear, high-power diode lasers by use of micro-optics.
We have designed, fabricated, and characterized a micro-optical beam-shaping device that is intended to optimize the coupling of an incoherent, linearly extended high-power diode laser into a multimode fiber. The device uses two aligned diffractive optical elements (DOEs) in combination with conventional optics. With a first prototype, we achieved an overall efficiency of 28%. Straightforward i...
متن کاملFemtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals
A simple optical interference method to fabricate microperiodic structures was demonstrated. Femtosecond laser pulse was split by a diffractive beam splitter and overlapped with two lenses. Temporal overlap of the split femtosecond pulses, which requires 10 mm order accuracy in optical path lengths, was automatically achieved by this optical setup. One-, two-, and three-dimensional periodic mic...
متن کاملParallel laser micromachining based on diffractive optical elements with dispersion compensated femtosecond pulses.
We experimentally demonstrate multi-beam high spatial resolution laser micromachining with femtosecond pulses. The effects of chromatic aberrations as well as pulse stretching on the material processed due to diffraction were significantly mitigated by using a suited dispersion compensated module (DCM). This permits to increase the area of processing in a factor 3 in comparison with a conventio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010